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The wakes behind square cylinders with variation in incidence angle are computed
over a range of Reynolds numbers to elucidate the three-dimensional stability and
dynamics up to a Reynolds number of Re =300, based on the projected height
of the inclined square cylinder. Three-dimensional instability modes are predicted
and computed using a linear stability analysis technique and three-dimensional
simulations, respectively. Depending on the incidence angle, the flow is found to
transition to three-dimensional flow through either a mode A instability, or a
subharmonic mode C instability. The mode A instability is predicted as the first-
occurring instability at incidence angles smaller than 12◦ and greater than 26◦, with
the mode C instability predicted between these incidence angles. At a zero-degree
angle of incidence, the wake instabilities closely match modes A, B and a quasi-
periodic mode predicted in earlier studies behind square and circular cylinders. With
increasing angle of incidence, the three-dimensional wake transition Reynolds number
first increases from Re = 164 as the mode A instability weakens, before decreasing
again beyond an incidence angle of 12◦ as the wake becomes increasingly unstable
to the mode C instability, and then again to the mode A instability as the incidence
angle approaches 45◦. A spanwise autocorrelation analysis from computations over
a cylinder span 20 times the square cross-section side length reveals that beyond the
onset of three-dimensional instabilities, the vortex street breaks down with patterns
consistent with spatio-temporal chaos. This effect was more pronounced at higher
incidence angles.

1. Introduction
The transition from two- to three-dimensional flow around a bluff body is an

important phenomenon to understand in an engineering context, as the wake-induced
forces can have potentially detrimental structural or positional effects on the body
or its surroundings. Lift and drag forces on bodies are altered by the development
of three-dimensional structures in the wake (Thompson, Hourigan & Sheridan 1996),
and structures that develop at the onset of three-dimensional transition have been
observed to persist to Reynolds numbers as high as 10 000 (Mansy, Yang & Williams
1994). Understanding the behaviour of the wake at transition can inform the likely
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behaviour of the wake at higher Reynolds numbers, without resorting to expensive
resolution of the turbulent wake.

The transitional behaviour of the wakes behind a number of bluff bodies has
been the subject of extensive numerical and experimental investigation. For instance,
Karniadakis & Triantafyllou (1992); Barkley & Henderson (1996); Thompson et al.
(1996); Williamson (1996); Leweke & Williamson (1998); Thompson, Leweke &
Williamson (2001b) investigated a circular cylinder, Sheard (2007) investigated an
elliptical cylinder, Ryan, Thompson & Hourigan (2005) investigated an elongated
cylinder and Robichaux, Balachandar & Vanka (1999); Sohankar, Norberg &
Davidson (1999); Luo, Chew & Ng (2003); Saha, Biswas & Muralidhar (2003);
Luo, Tong & Khoo (2007); Tong, Luo & Khoo (2008) investigated a cylinder with a
square cross-section. A general consensus arising from these studies is that cylinder
wakes may be unstable to two regular modes (modes A and B) with a unique
spanwise wavelength and spatiotemporal symmetry. In addition, systems with a plane
of symmetry through the wake centreline may also be unstable to a quasi-periodic
mode, whereas systems without this symmetry also permit a subharmonic mode
(sometimes referred to as mode C in the context of cylinder wakes; see Marques,
Lopez & Blackburn 2004, for a detailed analysis of this behaviour). A subharmonic
mode C instability was discovered in the wakes behind rings by Sheard, Thompson &
Hourigan (2003); Sheard et al. (2005), and in a numerical investigation of staggered
pairs of cylinders, Carmo et al. (2008) found evidence that mode C sometimes plays
a prominent role in the bifurcation from two- to three-dimensional flow.

Square cylinders at an angle of incidence have received attention recently (Dutta,
Panigrahi & Muralidhar 2008; Ranjan, Dalal & Biswas 2008), though the three-
dimensional wake stability of these flows has largely focused on the zero-incidence-
angle case (Robichaux et al. 1999; Sohankar et al. 1999; Luo et al. 2003; Saha et al.
2003; Luo et al. 2007). Only a very recent experimental study (Tong et al. 2008)
has considered the impact of incidence angle variation on wake stability. Despite the
absence of a reflective symmetry for square cylinders at inclination angles between
0◦ and 45◦ that study detected transitions attributed to modes A and B, and not a
subharmonic mode. At a zero-incidence angle, Robichaux et al. (1999) predicted the
critical Reynolds numbers for transition to modes A and B, as well as to a third
instability mode resembling a subharmonic mode (their mode S), to be 162 ± 12,
190 ± 14 and 200 ± 5, respectively. The modes were observed to be most unstable to
spanwise perturbations with wavelengths of 5.22d , 1.2d and 2.8d , respectively. These
values compare favourably to other studies. For instance, (Luo et al. 2003) found
through experimental measurements that these transitions occurred at approximately
Re = 160 and 200, respectively.

In this study, a linear stability analysis is conducted with the support of three-
dimensional computations to develop our understanding of the stability and dynamics
of the wakes behind inclined square cylinders through the three-dimensional transition
regime. In particular, the question as to the existence of a subharmonic mode in
addition to modes A and B will be addressed.

The structure of this paper is as follows. In § 2, the numerical approaches are
described, and a grid independence study and validation is reported. Reported
results include a description of the incidence-angle-dependence of three-dimensional
bifurcations in § 3.1, simulated dye visualizations in § 3.2, Floquet analysis results
in § 3.3, three-dimensional wake structure in § 3.4, nonlinear modelling of three-
dimensional bifurcations in § 3.5, wake pattern formation at higher Reynolds number
in § 3.6, and Strouhal–Reynolds number dependencies in § 3.7. Far-wake fluctuations
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Figure 1. Schematic diagram of the system under investigation, showing cylinder side length
d , projected frontal height h, free stream velocity U and the Cartesian coordinate system.

have been reported in previous studies (Sohankar et al. 1999). In the Appendix, the
origin and control of this instability is investigated.

2. Methodology
The system under investigation in this paper comprises a cylinder with a square

cross-section (side length d) inclined at an angle of incidence (α) to an oncoming
free stream with velocity U . A schematic diagram of this system is shown in figure 1.
The cylinder presents a height h = d (sin (α) + cos (α)) to the oncoming flow, which
serves as a reference length for the dimensionless parameters in this investigation. A
Reynolds number is defined as

Re =
Uh

ν
, (2.1)

where ν is the kinematic viscosity of the fluid. Wake shedding frequencies (f ) are
characterized by a Strouhal number, defined as

St =
f h

U
. (2.2)

It is noted that Reynolds and Strouhal numbers based on the side length d can be
recovered by dividing (2.1) and (2.2) by sin(α) + cos(α).

2.1. Numerical treatment

The incompressible Navier–Stokes equations are solved using a spectral-element dis-
cretization in space (Karniadakis & Triantafyllou 1992) and a third-order backwards-
multistep method in time (Karniadakis, Israeli & Orszag 1991; Blackburn &
Sherwin 2004). The present code has been used and validated in Sheard et al.
(2007) to investigate the flow past arresting cylinders, and facilitates two-dimensional
computation on a mesh comprising of nodal quadrilateral spectral elements. Three-
dimensional flows in spanwise-homogeneous geometries are computed by means of
a spectral-element/Fourier algorithm (Karniadakis & Triantafyllou 1992; Thompson
et al. 1996; Blackburn & Sherwin 2004), in which the flow variables are discretized
in the spanwise direction using a Fourier series. This naturally imposes a periodic
condition on the flow in the spanwise direction.

A stability analysis algorithm is employed to determine the stability of two-
dimensional flow solutions to three-dimensional perturbations following Barkley &
Henderson (1996). A periodic two-dimensional flow is evolved using the Navier–
Stokes equations, and three-dimensional perturbation fields are computed using
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Figure 2. Examples of the meshes employed in this study. (a) The complete computational
domain. (b) Mesh detail in the vicinity of cylinders with (top) α = 0◦, (middle) 22.5◦ and
(bottom) 45◦ with interpolation grids within each element shown.

linearized Navier–Stokes equations. The perturbations vary sinusoidally in the
spanwise direction, and each perturbation wavenumber (m) couples only with the
two-dimensional base flow, and not other perturbations. This allows the stability of
three-dimensional perturbations to be determined both as a function of Re and m.
The stability analysis supplies eigenvalues and eigenvectors, corresponding to the
Floquet multipliers (or amplification factors) of leading instability modes at a given
wavenumber, and perturbation flow fields corresponding to the modes. Typically, only
the leading eigenvalue is of interest as this relates to the fastest growing mode at a
given Reynolds number and wavenumber. The Floquet multiplier is complex, and
instability modes are classified as follows: regular modes have Floquet multipliers
containing only a positive real component, subharmonic modes have only a negative
real component and quasi-periodic modes arise from a complex-conjugate pair of
multipliers with a non-zero imaginary component.

The leading eigenvalues and eigenvectors arising from the stability analysis are
resolved in the present code using either a power method (as employed in Sheard &
Ryan 2007), or an Arnoldi method (Barkley & Henderson 1996; Blackburn & Lopez
2003), which is implemented through the ARPACK package (Lehoucq, Sorenson &
Yang 1998). To exploit efficiency through parallelization, eigenvalues were typically
resolved using the power method with numerous spanwise wavenumbers being
computed concurrent to a single base flow. However, the magnitude of quasi-periodic
modes were confirmed by subsequent application of the implicitly restarted Arnoldi
method.

Figure 2 shows the meshes employed in this study. At the left domain boundary,
a unit velocity field is imposed to create a free stream flowing from left to right.
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Figure 3. Percentage error in Strouhal number plotted against element polynomial degree at
both Re = 141 and α = 45◦ (�), and Re = 300 and α = 0◦ (�). Dashed lines are included for
guidance.

Along the top and bottom domain boundaries, stress-free impermeable boundaries
were imposed in preference to a unit free stream velocity to minimize blockage effects.
At the right domain boundary, a standard outflow boundary condition was imposed
through a zero outward normal gradient of velocity and a constant reference pressure.
A zero velocity (no-slip boundary) was imposed on the cylinder surface. To preserve
the third-order time accuracy of the scheme, a suitable Neumann boundary condition
was imposed on the outward normal gradient of pressure at boundaries where a
Dirichlet condition was imposed on the velocity field, following Karniadakis, Israeli
& Orszag (1991). All the meshes had approximately 644 elements, and 81 interpolation
points per element featured throughout. The blockage ratio varies between 2.4 % and
3.4 % for incidence angles α = 0◦ to 45◦. Sohankar et al. (1999) reported a reduction in
the Strouhal number of 1.4 % as the blockage ratio was reduced from 5 % to 2.5 %.
These correspond to the values used by Robichaux et al. (1999) and the present
study, respectively. In the present study, the domain extended upstream by 20d and
downstream by 35d , which were found to be sufficiently large that domain errors
were negligible. The significantly longer downstream distance, when compared with
earlier studies, was used to capture features developing in the far wake.

2.2. Grid independence and validation

A grid independence study was performed to determine the variation in error with
element polynomial degree. The Strouhal number was monitored (Thompson et al.
1996; Sheard 2007) in two cases (Re = 141, α = 45◦ and Re =300, α = 0◦), and the
error was taken as the per cent difference between the Strouhal number obtained
at each resolution with a higher resolution reference case computed under the same
conditions. The results are plotted in figure 3.

In both cases, errors of less than 0.1 % were obtained with polynomial degree 9,
which was employed throughout the remainder of this study. The resulting meshes
contain approximately 41 × 103 nodes. Solutions were stable in time and exhibited
negligible time integration errors when a time step of �t =0.0025d/U was used.
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Figure 4. Floquet multiplier magnitudes (|μ|) plotted against spanwise wavenumber (m) for a
square cylinder at zero-incidence angle at Re = 205. The solid curves denote the present data,
and the data from Robichaux et al. (1999) and Blackburn & Lopez (2003) are indicated by
squares and circles, respectively.

In order to validate the stability analysis algorithm employed in this study, a
comparison is made to the earlier results reported by Blackburn & Lopez (2003). Their
calculations deliberately reproduced the small domain employed by Robichaux et al.
(1999), who were the first to investigate the three-dimensional instabilities in the wake
behind a square cylinder at zero-incidence angle. To achieve a reliable comparison
with these earlier studies, a mesh was produced to the precise dimensions used in
those studies (i.e. distances from the surface of the cylinder to the upstream, transverse
and downstream boundaries of 5d , 8.5d and 17d , respectively), with identical element
distributions and polynomial degree 16 being employed. In the present computation, a
free stream velocity field was imposed on the upstream and transverse boundaries, and
an outflow boundary comprising a zero normal gradient of velocity and a constant
reference pressure was imposed. This again was consistent with Robichaux et al.
(1999), with the exception of the outflow boundary, where they instead employed
a buffer-domain technique (Mittal & Balachandar 1996). A two-dimensional flow
solution was obtained at Re =205, and the stability of this flow was determined over
a range of spanwise wavenumbers 0.25 � m � 8. Data from Robichaux et al. (1999)
and Blackburn & Lopez (2003) was digitized, and is included in figure 4 along with
the present results. The results of Blackburn & Lopez (2003) are reproduced with
the present algorithm to a high fidelity, demonstrating the accuracy of the present
technique.

3. Results
3.1. Three-dimensional bifurcation scenario

The three-dimensional stability of the wakes was determined by means of a linear
stability analysis at seven equi-spaced incidence angles in the range 0◦ � α � 45◦. The
analysis provides growth rates of instability modes as a function of Re and the
spanwise wavenumber m. Polynomial interpolation was employed to identify the
Reynolds numbers at which the three-dimensional modes were neutrally stable
(zero growth rate), and the results of this analysis are summarized in figure 5.
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Figure 5. Predicted critical Reynolds numbers for three-dimensional instability modes plotted
against incidence angle (α). For comparison, the experimental results of Tong et al. (2008)
(dashed lines) are included, with modes A and B represented by ‘×’ and ‘+’, respectively.
Solid lines are added to the current data for guidance, which includes modes A (�) and B
(�), the subharmonic mode C instability (�) and the quasi-periodic mode (�). A thick line
traces the predicted threshold between two- and three-dimensional flow, and the first-occurring
three-dimensional instability mode over ranges of incidence angle are labelled with these ranges
separated by vertical dash-dotted lines.
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Figure 6. Spanwise wavelengths (λ/d) of three-dimensional modes at the onset of their
instability, plotted against incidence angle (α). Solid lines are added to the current data for
guidance, and symbols show mode A (�), mode B (�), mode C (�) and the quasi-periodic
mode (�).

The wavelengths at which the maximum growth rate was obtained for each mode
was also determined from this analysis, and these results are plotted in figure 6.

In a recent experimental study, Tong et al. (2008) suggested that the wake behind a
square cylinder transitioned to three-dimensional flow through the mode A instability,
with a subsequent transition to mode B occurring for all incidence angles as the
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Reynolds number was increased. In that study, the transition Reynolds number to
mode A was found to increase as the incidence angle increased from α = 0◦ to 10◦.
Curiously, with further increases in incidence angle, the transition Reynolds number
reversed this trend and began to decrease. A similar trend was also recorded for the
mode B transition.

In Tong et al. (2008), three-dimensional transition was identified using hotwire
anemometry. Following Williamson (1988b), the first and second discontinuities in
the Strouhal–Reynolds number profiles were taken to represent the transitions to
modes A and B, respectively. Visualization was conducted using the method of dye
injection, whereby dye was injected into the flow from the top face of the cylinder
to reveal the three-dimensional structure of the vortices shed into the wake. Visuali-
zations were presented at α = 0◦, 10◦ and 45◦ with measurements of the spanwise
wavelengths of the first-occurring three-dimensional wake structures being in the
range of 4d–5d , which is consistent with the mode A instability (Blackburn & Lopez
2003).

The present stability analysis reveals that the first-occurring three-dimensional
instability mode actually depends on the incidence angle. At small incidence angles,
three-dimensional flow is predicted to develop through a mode A instability. However,
as α increases, mode A is predicted to weaken. From 0◦ to 7.5◦, growth rates over the
mode A waveband were found to reach a local maximum with increasing Reynolds
number, before subsequently decreasing, and this peak growth rate decreased with
increasing incidence angle. Presumably, the distortion of the two-dimensional wake
with changing incidence angle acts to suppress the mode A instability. Interpolation
between data acquired at 7.5◦ and 15◦ yielded a critical incidence angle α ≈ 12, above
which mode A is not predicted to arise, as growth rates in the mode A waveband
remain negative (two-dimensionally stable).

At all non-symmetrical incidence angles tested (7.5◦–37.5◦), growth rates corres-
ponding to a subharmonic instability mode occurring with a spanwise wavenumber
of m ≈ 3 were detected. It will be shown that this mode is consistent with the
mode C instability discovered in the wakes behind rings by Sheard et al. (2003), and
also observed behind offset tandem cylinders by Carmo et al. (2008). The mode C
instability becomes more unstable as α increased from 0◦, and becomes the first-
occurring instability beyond 12◦.

The trend towards a wake with centreline symmetry as α → 45◦ was found to
suppress the mode C instability, and promote the mode A instability. At 22.5◦,
positive growth rates were again predicted in the mode A waveband, though at this
incidence angle the mode C instability is predicted to be the first-occurring mode.
Beyond α ≈ 26◦, this behaviour is reversed, and mode A resumes as the first-occurring
three-dimensional instability mode. As expected, no evidence of the mode C instability
was detected at α = 45◦.

In summary, three-dimensional flow develops through three distinct bifurcations,
depending on incidence angle: a small-incidence-angle mode A branch below 12◦, a
mode C branch between 12◦ and 26◦ and a large-incidence-angle mode A branch
above 26◦. The characterization of the appearance of the mode A instability as
two distinct branches is supported by the incidence-angle variation of the predicted
spanwise wavelengths of the mode A instability in figure 6. The small-incidence-
angle branch displays a decrease in the spanwise wavelength from 5.2d to 4.8d ,
whereas the re-emergence of the mode A instability beyond α ≈ 20◦ occurs with a
wavelength decreasing from approximately 5.8d: the two trends are clearly not part
of a continuous profile.
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Autocorrelation measurements reported in Tong et al. (2008) showed that the
mode A instability had a longer spanwise wavelength at 10◦ than at 0◦, contrary
to the present prediction. It should be noted, though, that the wavelengths reported
in figure 6 represent three-dimensional modes at the onset of their transition. The
fastest growing modes were generally found to vary with Reynolds number, so that
there could well be a difference between the wavelength in the immediate vicinity
of the transition Reynolds number, and at the higher Reynolds numbers at which
the experimental measurements were performed. Moreover, beyond the onset of the
transition, a finite band of wavelengths are unstable, allowing experimental conditions
(end effects, aspect ratio, etc.) to influence the prevailing spanwise wavelength of a
three-dimensional mode. For example, our analysis predicts that at Re = 172 and
α = 7.5◦ the mode A instability is unstable over wavelengths 3.9d � λ� 7.9d .

Figure 5 provides an explanation for the local peak in three-dimensional transition
Reynolds number measured by Tong et al. (2008) at α ≈ 10◦. The present analysis
reveals that the peak occurs at a cross-over between the small-incidence-angle mode A
branch and the mode C branch, rather than being a local peak in a single mode A
transition Reynolds number profile.

The present bifurcation scenario also explains why the dye visualizations of Tong
et al. (2008) (see their figure 5) only displayed evidence of mode A and mode B
instability modes, and not the mode C instability predicted here: Mode A is predicted
to be the first-occurring instability at each of the incidence angles they presented (0◦,
10◦ and 45◦). Few intermediate-wavelength three-dimensional instability modes have
been visualized experimentally (e.g. see Zhang et al. 1995; Sheard et al. 2005), and
no visualizations of such modes in the square cylinder wake in the three-dimensional
transition regime are known to the authors.

3.2. Simulated dye visualizations: mode A or mode C?

Three-dimensional direct numerical simulations were conducted in conjunction with
simulated particle tracking (Sheard et al. 2007) to investigate the likely structure of
the wake at incidence angles in the mode C regime. Simulations were performed at
0◦ for direct comparison with the dye visualizations of Tong et al. (2008), and at
15◦ to elucidate the appearance of the wake structure through evolution of three-
dimensional flow in the wake in the mode C incidence angle range. At α = 0◦, the
wake was computed at Re = 188 and 244, and the results are plotted in figure 7. The
simulations were performed with a spanwise wavelength equal to the wavelength of
the mode A instability at each incidence angle, and several spanwise periods of the
solutions are displayed for comparison purposes. Based on the predicted spanwise
wavelengths of the mode C instability shown in figure 6, a mode C instability
would be identified by a three-dimensional pattern in the wake with a wavelength
of approximately 2d . In both the experiments and the simulations, the visualization
medium is injected from the top of the cylinder. This comparison demonstrates
that dye structures at Re =188 in the experiments are indeed consistent with the
development of the mode A instability, and at Re = 244 the smaller scale structures
associated with the mode B instability are visible in both the experimental and
numerical frames.

The simulations at 15◦ are shown in figure 8, and it can be seen that the
dominant spanwise structure has a spanwise wavelength of approximately 2.6d ,
which is consistent with the mode C instability. It is currently unknown whether these
simulated visualizations can be (or indeed have been) observed experimentally: this
would be a useful direction for future work.
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Figure 7. A comparison between experimental dye visualization (left, reproduced with
permission from Tong et al. 2008) and three-dimensional numerical simulations injected with
passive tracer particles (right). Wakes are shown with α = 0◦ and Re = 188 (a) and 244
(b). Flow is from left to right, the cylinder is at the left of each frame and dye/particles are
injected from the upper surface of the cylinder.

3.3. Wavenumber dependence of Floquet multipliers at α =0◦, 22.5◦ and 45◦

The stability of the wakes at three incidence angles will now be studied in detail
to underpin the bifurcation scenario painted in figure 5. Plots of Floquet multiplier
against wavenumber at incidence angles 0◦, 22.5◦ and 45◦ are shown in figures 9–11,
respectively.

Figure 9 shows the results at α =0◦. Floquet multipliers were computed at a
range of Reynolds numbers and spanwise wavelengths to identify the neutral stability
thresholds (|μ| = 1) of any available instability modes in the wake. The previous
stability analyses of a square cylinder at zero angle of incidence (Robichaux et al.
1999; Blackburn & Lopez 2003) were performed on a significantly smaller domain
than those employed in the present study. If the data at Re = 205 in figure 9 is
compared with the validation data in figure 4, it can be seen that smaller Floquet
multipliers are predicted from stability analyses computed on the larger domain. This
effect is most pronounced at the peak of the high-wavenumber mode, which achieves
a maximum of |μ| =1.46 at m ≈ 5.4 in figure 9. From the calculations on the smaller
domain, an artificially amplified peak of |μ| =2.0 is predicted, occurring at the same
wavenumber. The present computational domain is larger in every direction (inflow,
transverse and outflow) than the domain used in the validation study, vastly reducing
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Figure 8. Simulated dye visualization computations of the wake at α = 15◦ at Re = 188
(a) and 244 (b). Field of view is as per figure 7.
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Figure 9. Floquet multiplier magnitude |μ| plotted against spanwise wavenumber m for a
square cylinder at α = 0◦ (the wavenumber relates to the spanwise wavelength by λ= 2πd/m).
Reynolds numbers (�) Re = 164, (�) 197, (�) 205 and (�) 215 are plotted. Filled black
symbols and solid curves show real Floquet multipliers (synchronous modes); hollow symbols
and dotted curves correspond to complex-conjugate Floquet multipliers (quasi-periodic modes).
Curves are included for guidance, and the neutral stability threshold at |μ| = 1 is also shown
by a dashed line.

the domain effects on the flow, and therefore reducing the contamination of Floquet
multiplier predictions due to the domain size.

To contextualize this finding in relation to earlier stability analysis studies, Barkley
& Henderson (1996) reported that Floquet multipliers did not alter significantly when
the stability analysis was performed on smaller computational domains. However, in
that study, the smallest domain used was larger than that employed by Robichaux
et al. (1999) (upstream length 8d versus 5.5d , transverse length 8d versus 8.5d and
downstream length 25d versus 17.5d), thus avoiding the most extreme influence of
the domain on the predicted Floquet multipliers. Moreover, the base flow employed
in their stability analyses on smaller meshes was interpolated from their largest mesh,
and thus the perturbation was permitted to evolve on a base flow which was not
adversely affected by the smaller domain sizes. In light of this, the present predictions
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Figure 10. Floquet multiplier magnitude |μ| plotted against spanwise wavenumber m for
a square cylinder at α = 22.5◦. Reynolds numbers (�) Re = 98, (�) 149 and (�) 163 are
plotted. Grey shaded symbols and solid curves correspond to negative real Floquet multipliers
(subharmonic modes); real and complex modes are identified as per figure 9.

of the critical Reynolds numbers for the onset of three-dimensional flow improve on
the values predicted by Robichaux et al. (1999).

In the present computations shown in figure 9, peaks consistent with mode A
and B instabilities are predicted to become neutrally stable at Re = 164 and
Re = 197, respectively, and a quasi-periodic mode is predicted to become unstable at
Re ≈ 215. These modes are most unstable at spanwise wavenumbers m = 1.2, 5.5 and
approximately 2.4, respectively (λ/d = 5.2, 1.1 and 2.6, respectively). Up to Re ≈ 210,
mode A is the fastest growing instability mode.

The results of the α = 22.5◦ case are shown in figure 10. Two distinct real modes are
predicted. The wake is firstly unstable to a mode with spanwise wavenumber m =3.0
(λ/d = 2.1) at Re = 149. At Re =163 a second mode crosses the neutral stability
threshold with a spanwise wavenumber of m =1.1 (λ/d =5.6). It will be shown that
these modes were consistent with mode C and mode A instabilities, respectively.
Quasi-periodic Floquet modes were also detected over a narrow band of spanwise
wavelengths at lower Reynolds numbers, though these did not become unstable over
the range of Reynolds numbers investigated (Re � 163).

Figure 11 shows the stability of the cylinder wake at α = 45◦. The wake was found
to be unstable to an instability with m = 1.1 (λ/d = 5.7) beyond Re = 116, which
will be shown to be consistent with a mode A instability. Wake stability was not
investigated beyond Re ≈ 140 as the two-dimensional base flow became aperiodic.
This aperiodicity developed as a result of the vortices in the wake separating into
two parallel rows. No additional instability modes were detected at these Reynolds
numbers.

3.4. Mode symmetry and structure

Comparisons are now presented between the predicted three-dimensional instability
modes identified in the previous section, and the corresponding three-dimensional
wakes computed by means of direct numerical simulations. Three-dimensional
isosurface plots have been generated by superimposing the Fourier mode of
the instability onto the two-dimensional base flow. In addition, three-dimensional
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Figure 11. Floquet multiplier magnitude |μ| plotted against spanwise wavenumber m for a
square cylinder at α = 45◦ and Re = 116. Real and complex modes are identified as per figure 9.

simulations with the same spanwise wavelengths have been performed at Reynolds
numbers slightly above the predicted critical Reynolds numbers for each of the
transition modes. The spanwise wavelength of each three-dimensional simulation
is represented by the wavenumbers (m) given in captions for figures 12–14. The
spectral-element/Fourier computations employed 15 spanwise Fourier modes, which
was found by tests to be sufficient to resolve the three-dimensional wake structures.
These plots reveal details about the spatio-temporal symmetry and vortical structure
of the modes. For clarity, the spanwise phase of the three-dimensional wakes have
been shifted to match the stability analysis results.

The plots in figure 12 show the modes computed at α =0◦. In figure 12(a), the
spatio-temporal symmetry of both the perturbation field and the three-dimensional
simulation are the same. Evolving the wake by one half-period and reflecting about
the centreline (a half-period flip) produces an identical flow. This is characteristic of
the mode A instability (Barkley & Henderson 1996). It is notable that the visible
isosurfaces of streamwise vorticity extend much further downstream in the three-
dimensional wake than in the perturbation field, signifying the substantial modification
of the wake through the nonlinear growth regime of the instability.

Figure 12(b) shows wakes consistent with the mode B instability, which has a
spatio-temporal symmetry whereby a half-period flip and a spanwise translation of
half a wavelength of the mode (λ/2) recovers the original flow. In terms of the
streamwise vorticity field, this symmetry dictates that the sign of vorticity at a point
in the wake is equal to the sign of vorticity at a point reflected about the wake
centreline and shifted one half period in time. In the three-dimensional simulation
the mode B wake structures diffuse within 3–4 shedding cycles, and the Floquet mode
structure can clearly be seen in the saturated wake.

In figure 12(c) the quasi-periodic mode is plotted alongside the corresponding
three-dimensional wake. As the Reynolds number for this simulation was higher
than that of the mode B wake shown in figure 12(b), and the spanwise extent of
the computational domain was longer, the mode B instability was free to evolve in
competition with the quasi-periodic mode. In approximately the first two-thirds of
the visible three-dimensional wake, three-dimensional structures resembling the mode
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(a)  m = 1.2, (top)  Re = 164 and (bottom)  Re = 180.

(b)  m = 5.5, (top)  Re = 196 and (bottom)  Re = 210.

(c)  m = 2.4, (top)  Re = 213 and (bottom)  Re = 230.

Figure 12. Three-dimensional isosurface plots of the wakes behind a square cylinder at an
angle of incidence α =0◦. Each pair is drawn to the same scale, with the top image showing
the leading eigenvector fields of the instability modes at the predicted onset of the instability
superimposed onto the base flow, and the bottom images showing the corresponding saturated
three-dimensional wakes computed using the spectral-element/Fourier algorithm at Reynolds
numbers above the predicted onset of the instability. Flow is left to right, and the images
are shown at the instant of peak lift force. Translucent isosurfaces show spanwise vorticity
(ωzd/U = ± 1), and three-dimensionality is revealed by opaque light and dark isosurfaces of
streamwise vorticity (ωxd/U = ± 0.2).
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(a)  m = 3.0, (top)  Re = 146 and (bottom)  Re = 170.

(b)  m = 1.13, (top)  Re = 173 and (bottom)  Re = 183.

Figure 13. Three-dimensional isosurface plots of the wakes behind a square cylinder at
an angle of incidence α = 22.5◦. Contours and shading are as per figure 12. In (b) the
three-dimensional wake exhibits mode C wake structures in preference to the predicted mode
A instability.

B wake are observed. Close inspection of the sign of successive streamwise vortices
along the span reveals that here two spanwise periods of the mode B instability
have emerged in preference to a wake resembling the quasi-periodic mode. Further
downstream, three-dimensional structures with a wavelength matching the span of the
computational domain are visible, though it is apparent that the wake is dominated by
three-dimensional structures consistent with the mode B instability. This behaviour is
consistent with the circular cylinder, where in fact mode B has been observed to persist
to very high Reynolds numbers (Mansy et al. 1994; Wu et al. 1996), despite stability
analysis predicting a quasi-periodic mode becoming unstable beyond the onset of
mode B. However, it must be noted that stability analysis predictions beyond the
first-occurring transition must be treated with caution as the true three-dimensional
flow is no longer consistent with the original two-dimensional solution.

In figure 13 the wakes at α =22.5◦ are plotted. In figure 13(a), the stability
analysis and three-dimensional simulations both display a mode consistent with a
subharmonic mode C instability (Sheard et al. 2005). Due to the lack of a reflective
symmetry of the geometry or the time-averaged wake in this case, this mode adopts
a 2T -periodic symmetry: i.e. the wake has undergone a period doubling as a result of
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Figure 14. Three-dimensional isosurface plots of the wakes behind a square cylinder at
an angle of incidence α = 45◦. The spanwise wavenumber is m= 1.1 and the solutions were
computed at (top) Re = 116 and (bottom) Re = 127. Contours and shading are as per figure 12.

the instability mode developing with a negative real Floquet multiplier. The structure
of the perturbation field and the three-dimensional wake are very similar, with strong
bands of streamwise vorticity arcing over pairs of shed vorticies. Curiously, these
vorticity bands are absent from the underside of the wake.

Interestingly, figure 13(b) demonstrates that while a wake consistent with a
mode A instability is predicted as a second three-dimensional instability at this
angle of incidence, the corresponding three-dimensional simulation shows that a
wake consistent with the mode C instability persists in preference to the mode A
instability. Here the perturbation field exhibits strong structures in the far wake,
which are not typically observed in stability analyses of cylinder wakes due to the
longer downstream domain employed here. The three-dimensional wake shows three
spanwise periods of the mode C wake structures in preference to structures consistent
with a mode A instability.

Plots of the wakes corresponding to the instability predicted with α = 45◦ are shown
in figure 14. This mode displays a spatio-temporal symmetry consistent with a mode A
instability, and a close similarity is observed between the perturbation field and the
three-dimensional wake.

The appearance of the shorter wavelength instability in the three-dimensional
computations at α =0◦ (mode B observed beyond the predicted onset of the quasi-
periodic mode), and at α = 22.5◦ (mode C observed beyond the predicted onset of
mode A) follows the trends in growth rates of the respective instability modes (see
figures 9 and 10, respectively). Figure 9 shows that at onset of the quasi-periodic
mode, the shorter-wavelength mode B instability has a substantially higher growth
rate. Similarly, figure 10 demonstrates that at onset of mode A, the mode C instability
also has a higher growth rate.

3.5. Three-dimensional wake transition: nonlinear dynamics

Linear stability analysis can inform on the spanwise wavelength, critical Reynolds
number and spatiotemporal symmetry of a predicted three-dimensional transition,
but it cannot provide insight into nonlinear aspects of the transition. As a three-
dimensional mode evolves on an unstable flow, its growth rate will change as a
function of amplitude of the three-dimensional mode, before eventually approaching
zero as the three-dimensional mode reaches a saturated state. This variation in growth
rate and saturation is a result of nonlinear contributions to the solution. Several
studies have modelled the evolution of a three-dimensional mode as a dynamical
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oscillator described by the Landau equation, including Henderson & Barkley (1996);
Henderson (1997) for the mode A and B transitions behind a circular cylinder,
Thompson, Leweke & Provansal (2001a) and Sheard, Thompson & Hourigan (2004)
for the non-axisymmetric transitions behind a sphere and ring, respectively, and
Carmo et al. (2008) for wake transitions behind staggered circular cylinders.

Those references should be consulted for details about the Landau equation and
its application to characterizing the nonlinear dynamics of a three-dimensional wake
transition. A brief overview is included here. The equation proposed by Landau &
Lifshitz (1976) is

dA

dt
= (σ + iω) A − l (1 + ic) |A|2 A + · · · ,

where A(t) is a complex representation of the amplitude of the mode. The right-
hand side comprises a series expansion of odd-numbered powers of A, with the first
term describing the linear growth (growth rate σ and angular frequency ω) when A

is very small, and higher terms being required to describe the nonlinear evolution
and saturation of the mode. Manipulation of this equation provides two general
behaviours depending on the sign of l. If l is positive, the mode will experience a
decrease in growth rate towards zero as the amplitude increases. In this case, higher
terms in the expansion are not required to describe the saturation of the mode, and
it can be shown that a truncation of this equation at the cubic term permits only
one amplitude at a given growth rate. This is consistent with a supercritical (or
soft) bifurcation, for which the flow is stable for all Re below the transition, and
unstable above it. Alternatively, if l is negative, higher terms in the expansion are
required to describe the mode saturation, and this is consistent with a subcritical
(or hard) bifurcation. Subcritical bifurcations permit a region of bistability in the
vicinity of the transition: i.e. if the amplitude is small, the mode decays towards
the two-dimensional solution branch, but at larger amplitudes, the three-dimensional
mode grows and saturates. This provides an hysteretic behaviour in the vicinity of a
subcritical bifurcation.

The nonlinear characteristics of the first-occurring three-dimensional transitions
behind an inclined square cylinder at angles 0◦, 22.5◦ and 45◦ were examined. These
angles were chosen to capture each of the regimes of the onset of three-dimensional
flow. The mode amplitude was measured from the envelope of the oscillation of
the spanwise velocity component at a point in the wake. At 0◦ and 22.5◦, the
transition was found to arise through a supercritical bifurcation, yielding a positive
l-coefficient. This suggests that the transition should be observed very close to the
predicted transition Reynolds numbers from the linear stability analysis reported in
this paper. At 45◦, the transition was found to arise through a subcritical bifurcation,
yielding a negative l-coefficient. Earlier analyses have shown mode A bifurcations
behind a circular cylinder (Henderson & Barkley 1996) and rings (Sheard et al. 2004)
consistently occur through a subcritical bifurcation. The present study demonstrates
that this behaviour is not universal due to mode A occurring through a supercritical
bifurcation at α = 0◦.

3.6. Wake patterns and mode energy with a longer spanwise domain

While the appearance of unique three-dimensional instability modes at Reynolds
numbers in the vicinity of the transitions is of fundamental interest in an engineering
context, the composition of the wake at higher Reynolds numbers is important.
In order to address this, three-dimensional computations were performed at each
incidence angle at Re = 300 and a computational domain with spanwise wavelength
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(a)  a = 0°

(b)  a = 22.5°

(c)  a = 45°

Figure 15. Plots showing the three-dimensional structure of the wakes behind a square
cylinder at Re = 300 with a spanwise computational domain of 20d . The vortex street is
identified by contours of (white) positive and (black) negative out-of-plane velocity plotted on
the y =0 plane. Isosurfaces of streamwise vorticity with levels ± 1U/d are shaded light and
dark. Flow is from left to right and, the cylinder (not shown) is located at the left of each
frame.

20d . This Reynolds number is well beyond the onset Reynolds numbers for the three-
dimensional instability modes predicted in this study, and the spanwise domain length
is sufficient to permit several spanwise repetitions of the available three-dimensional
modes to arise in the simulations. Isosurface plots exhibiting the three-dimensional
structure of these wakes are provided in figure 15. Comparing these plots with the
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wakes shown in figures 12–14 demonstrates that at higher Reynolds numbers, and with
a spanwise domain size large enough to include all the instability modes, the wakes
exhibit a reduced structural uniformity. In the near wake, short-wavelength streamwise
vortical structures are present, which have a spanwise wavelength consistent with
the mode B instability. These streamwise vortical structures dissipate within 3 to
4 shedding cycles, beyond which the Kármán vortices distort and break up. The
downstream wake is dominated by these dislocated spanwise vortices, and resembles
the wake patterns identified as defect chaos by Leweke & Provansal (1995) (e.g.
see their figure 31a) in their Ginzburg–Landau modelling of the vortex shedding
behind rings, and as ‘spot-like’ disturbances in Henderson (1997) (e.g. see their
figure 19). These patterns are examples of spatio-temporal chaos, where irregularity
is present both in a spatially extended dimension (the spanwise direction) and in
time. It is also noted that the irregular downstream wake patterns shown here
also compare favourably with the experimental dye visualizations reproduced in
figure 7. As discussed by Williamson (1992), one mechanism for the development of
vortex dislocations involves the distortion of vortex rollers caused by the localized
development of three-dimensional modes, leading to a spatial variation in phase
across the wake.

These wake visualizations show that the relatively short-wavelength three-dimen-
sional instability modes (i.e. A, B, C, etc.) which develop on the parallel vortex rollers
of the near wake are replaced further downstream by the irregular patterns associated
with spatio-temporal chaos. However, this presents a question: are the coherent
three-dimensional mode structures disrupted and suppressed by deformations and
dislocations of the vortex rollers, or do they provide a perturbation leading to an
instability causing the breakdown to spatio-temporal chaos? It appears, based on the
ability of the Ginzburg–Landau model (Shraiman et al. 1992; Leweke & Provansal
1994) to describe a similar spatio-temporally chaotic state in the absence of any
perturbation analogous to those provided by secondary wake instabilities, that the
correct interpretation is that spatio-temporal chaos naturally develops in the wake,
and this subsequently suppresses the uniform structures associated with the evolution
of instabilities such as mode A or B.

To further investigate the presence of spanwise structures in the wake, a quantitative
description of the self-similarity of the solutions in the spanwise direction was
ascertained by means of an autocorrelation analysis and a spanwise Fourier analysis
of the solution.

At a number of locations along the wake centreline (y = 0) extending from directly
behind the cylinder to 35d downstream, a one-dimensional autocorrelation of the
spanwise variation of the velocity field was calculated. These autocorrelations were
normalized by the variance of the signal, meaning that the autocorrelation function
returned values ranging from 1, through 0, to −1, which corresponded to completely
correlated, uncorrelated and inversely correlated signals, respectively. To achieve
a global picture of the wake structures, the individual autocorrelation functions
were averaged. If the wake possesses spanwise-periodic global structures with a
shorter wavelength than the spanwise domain, these should appear as peaks in the
autocorrelation function at a shift equal to their wavelength. Figure 16 shows the
resulting mean autocorrelation functions for the three incidence angles considered.
The unit correlation at spanwise shifts of 0 and 20d results from the spanwise
periodicity over 20d imposed by the boundary conditions of the simulation. By taking
the mean of a number of discrete autocorrelation functions, peaks corresponding
to localized wake features have been obscured: indeed local peaks in some of the
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Figure 16. The mean of the spanwise autocorrelation functions for the z component of
velocity sampled along the wake centreline. The wakes were computed at Re = 300. Angles of
incidence α =0◦ (solid curve), 22.5◦ (dashed curve) and 45◦ (dash-dotted curve) are shown.

autocorrelation functions suggested the presence of spanwise-repeating structures with
wavelengths corresponding to each of the underlying three-dimensional instability
modes reported in this study. However, there was no discernable evidence of any
incidence-angle dependence of a particular mode over the others, and the mean
autocorrelation functions demonstrate that these were isolated occurrences, and were
not representative of the global spatial structure of the wake.

The determination that the dominant spanwise scale in the wake in these simulations
is equal to the longest computed wavelength is further evidenced by the spanwise
mode energy spectrum. The total kinetic energy in each spanwise Fourier mode
was integrated over the computational domain, and to overcome the high spatio-
temporal irregularity of these flows, a time-average of the mode energy spectrum was
calculated from approximately 300 samples obtained over approximately 10 shedding
cycles. While a greater number of samples would be desirable, the cost of these
computations was prohibitive. The calculated time-averaged mode energy spectra are
plotted in figure 17. The three curves demonstrate that the lowest wavenumbers
contain the highest energy, and viscous diffusion compels a decrease in mode
energy with an increase in wavenumber. No discernable peaks are seen at any
of the plotted incidence angles at wavenumbers corresponding to modes A, B or C
(i.e. m ≈ 1.2, 6 or 3, respectively). This supports the conclusions drawn based on
the autocorrelations shown in figure 16, regarding the spanwise wavelength of the
dominant three-dimensional wake structures.

Of the three incidence angles shown in figure 17, the wake obtained at α = 0◦

displays the lowest mode energy at low wavenumbers, and the slowest decay of
mode energy with increasing wavenumber. This reflects the structure of the flow
visualized in figure 15, where the underlying vortex rollers are seen to remain parallel
to a greater distance downstream with α =0◦ than 22.5◦ or 45◦ before yielding
to the development of spatio-temporal chaos. Hence there is less energy contained
in small non-zero wavenumbers (the logarithmic scaling eliminates the m = 0 mode
energy). It is speculated, therefore, that the development of spatio-temporal chaos may
exhibit some incidence-angle dependence, with higher incidence angles developing
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Figure 17. Time-averaged mode energy spectrum for wakes behind a square cylinder at
Re = 300 with a spanwise domain length of 20d , plotted against wavenumber m. Line styles
show incidence angles α =0◦ (solid curve), 22.5◦ (dashed curve) and 45◦ (dash-dotted curve).
A logarithmic scale is used on both axes. Error bars are included with the 0◦ data over the
domain m< 6, where the error bar magnitude is determined from the standard deviation of
the energy time history for each mode.

spatio-temporal chaos at shorter distances downstream than at smaller incidence
angles. The reliability of this interpretation could be questioned due to the relatively
small sample set for this data. However, the range of uncertainty for the 0◦ data
(indicated by the error bars showing the standard deviation of each point) is much
smaller than the difference between the 0◦ data and the other data for m � 3.5.

The work presented in this paper provides a clear picture of the transitions in the
wake of an inclined square cylinder as the Reynolds number is increased through the
three-dimensional transition regime. The onset of three-dimensional flow occurs at
Reynolds numbers elucidated in figure 5, which causes the formerly parallel and two-
dimensional wake vortices to develop three-dimensional flow through either a mode A
or a mode C instability, depending on the incidence angle. Beyond the onset of these
instabilities, nonlinear effects and spanwise irregularities can lead to gradual switching
between available three-dimensional modes (such as between modes A and C at 15◦).
The resulting localized phase shifts distort the formerly parallel Kármán vortices.
Further downstream, this leads to a wake pattern formation consistent with spatio-
temporal chaos, whereby the distorted wake vortices undergo an irregular breakup
and merging process. The spatio-temporally chaotic wake replaces the spanwise-
periodic shorter wavelength three-dimensional structures associated with the linear
instability modes. Streamwise vortices resembling the mode B instability persist in
the near wake and coexist with the structures arising from spatio-temporal chaos
further downstream. Inferring from computations reported by (Henderson 1997) and
experimental studies (e.g. Mansy et al. 1994), this behaviour will likely persist beyond
Re =1000.

3.7. Strouhal–Reynolds number dependence

Attention is now directed to the Strouhal–Reynolds number dependence of inclined
square cylinders. Strouhal numbers were determined by recording time histories of
velocity at a point in the wake 3d directly downstream of the cylinder. Below the
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Figure 18. A plot of St against Re for a square cylinder at incidence angles (�) 0◦, (�) 22.5◦

and (�) 45◦. Filled symbols show data acquired in the two-dimensional regime, while open
symbols show data from three-dimensional computations. Solid and dashed Curves are spline
fits to aid the eye. Small lightly shaded symbols show experimentally measured data digitized
from Tong et al. (2008) for a square cylinder at α = 0◦ for comparison.

transition Reynolds numbers for three-dimensional flow, Strouhal numbers were
calculated from two-dimensional simulations, which remained periodic over the range
of Reynolds numbers presented here. Three-dimensional computations often saturated
to an aperiodic state, and in these cases a mean shedding frequency was calculated by
determining the average period over many shedding cycles. The results are plotted in
figure 18, with three-dimensional data taken from the short- and long-span simulations
reported in § 3.4 and § 3.6, respectively.

Strouhal number data was acquired at α =0◦, 22.5◦ and 45◦. In the two-dimensional
regime, the results for α = 0◦ are qualitatively similar to those reported in Robichaux
et al. (1999), though their results were artificially amplified by the substantially smaller
domain: i.e. their blockage ratio was 5.56 %, compared to the present 2.4 %, and
their domain extended upstream and downstream just 25 % and 49 % of the lengths
used in this study, respectively.

The two-dimensional regime displays a distinctive trend characterized by an increas-
ing St value and decreasing gradient with increasing Reynolds number. This trend
is consistent with circular cylinders (Williamson 1988a) and slender rings (Leweke &
Provansal 1995), and those studies may be consulted for quadratic relationships for
the Roshko number (StRe) as a function of Re. Here the square cylinder produces
an increase in Strouhal number with an increase in incidence angle from 0◦ to
45◦. Beyond the onset of three-dimensional flow, limited data is available from the
computations, though important features have been captured. These include the
pronounced reduction in Strouhal number through the emergence of mode A above
Re = 164 at α = 0◦, a subsequent increase in Strouhal number to the level achieved
just prior to the development of three-dimensional flow at mode B emerges beyond
Re ≈ 200, and at higher incidence angles, a plateau in Strouhal number beyond three-
dimensional transition. It is apparent that the onset of three-dimensional flow initiates
a regime exhibiting a reduced Strouhal-number-dependence on Reynolds number.
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Included in figure 18 is experimental data digitized from Tong et al. (2008) for a
square cylinder at α = 0◦, in close agreement with the present numerical results. The
experimental results are greater than the computed results beyond Re ≈ 120, with a
discrepancy of approximately 0.008 in the three-dimensional transition regime. Their
experimental setup employed end-plates to maintain uniform parallel shedding in the
vortex street, and as documented in Luo et al. (2007), they measured an increase
in Strouhal number of up to 0.012 as the end-plate angle increased from 0◦ to 14◦.
They employed an end-plate angle of 14◦ for their hot film measurements of Strouhal
number, which may account for the discrepancy between these results.

4. Conclusions
This paper describes the three-dimensional transition scenarios in the wake of a

square cylinder inclined at angles 0◦ � α � 45◦. In contrast with an earlier study, it
is found that the first-occurring three-dimensional wake instability differs depending
on incidence angle. The first-occurring instability is mode A for 0◦ � α � 12◦ and
26◦ � α � 45◦, and mode C for 12◦ � α � 26◦. Transition Reynolds numbers Recrit

and spanwise perturbation wavelengths λcrit/d were found for each instability mode
and these are summarized in figures 5 and 6, respectively. Based on the frontal
height of the cylinder, the critical Reynolds numbers for the first-occurring three-
dimensional instability varied from Recrit = 164 at α =0◦ to Recrit = 116 at α = 45◦.
Consistent with earlier studies (Sheard et al. 2003) and theory (Marques et al. 2004),
the subharmonic mode C instability is most unstable at incidence angles providing
the greatest asymmetry about the wake centreline (i.e. α ≈ 20◦–25◦).

At α = 0◦, a quasi-periodic mode was detected at wavelengths between those of
modes A and B. With increasing incidence angle, shorter wavelength modes, as well
as quasi-periodic modes, became less prevalent and were supplanted by the mode C
instability. Three-dimensional computations verified the predicted three-dimensional
transition modes, and a nonlinear analysis using the Landau equation was used to
determine that the mode A instability develops through a supercritical bifurcation at
0◦ and a subcritical bifurcation at 45◦, and the mode C instability develops through
a supercritical bifurcation at 22.5◦.

With a spanwise domain of 20d , computations at Re =300 showed that the parallel
Kármán vortices break down through the development of spatio-temporal chaos. This
development causes the wakes to be dominated by energy in the longest available
spanwise wavelengths, rather than the wavelengths associated with the original linear
instability modes.

To carry out the computations reported in this study, the resources of the Australian
Partnership for Advanced Computing (APAC) were employed thanks to a grant under
the Merit Allocation Scheme. The authors thank Associate/Professor Luo Siao Chung
and the Journal of Fluids and Structures for granting permission to reproduce part
of figure 5 from Tong et al. (2008).

Appendix. Loss of symmetry about the wake centreline
In two-dimensional computations at Reynolds numbers Re � 280 and α = 45◦, an

asymmetry about the wake centreline emerged in the wake. This asymmetry developed
independently of spatial resolution, being observed for all element polynomial degrees
from 5 to 11. After convecting some distance downstream, the von Kármán vortex
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Figure 19. A plot showing contours of spanwise vorticity in the wake of a cylinder with
α = 45◦ at Re = 318. Notice that the wake deflects downwards, below the geometric centreline,
despite the symmetry of the body.

(i) (ii) (iii) (iv)

(i) (ii) (iii) (iv)

(a)

(b)

Figure 20. Plots of vorticity in the near wake at Re = 318 for (a) a square cylinder α = 45◦,
and (b) a cylinder with a rounded trailing edge. Shaded contours show spanwise vorticity at
(i) maximum lift, (ii) zero lift (lift decreasing), (iii) minimum lift and (iv) zero lift (lift increasing).
Contour lines show vorticity shifted in time by one half-period, and reflected in space about
the geometric centreline (y =0). When the contour lines match the shaded contours, the wake
is spatio-temporally symmetric about the centreline.

street drifted transversely from the wake centreline (see figure 19). Sohankar et al.
(1999) mentioned this effect briefly for their two-dimensional simulations around
square cylinders at α = 0◦. However, the focus of that study was three-dimensional
flows, and this phenomenon was not investigated in detail.

The pronouncement of the asymmetry was observed to increase with Reynolds
number, and the direction of propagation was determined by random initial
perturbations in the flow. Here the direction of vortex street propagation remained
biased to one side of the wake for at least 50 shedding cycles.

It was hypothesized that this asymmetry developed as a result of an instability
of the cyclic separation of flow from the sharp trailing corner of the body. This
corner penetrates into the formation region of the wake, and leads to an asymmetric
development of wake vortices. This is especially visible in figure 20. Notice, in
figure 20(a), the asymmetry in the negative vorticity near the lower aft surface of the
cylinder (i), and the corresponding positive vorticity near the upper aft surface (iii).
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In order to test this hypothesis, a modified cylinder geometry was constructed
featuring a square cylinder at α = 45◦, but with the downstream corner of the cylinder
being rounded, as shown in figure 20(b). Comparing the frames in figure 20(b) with
figure 20(a) demonstrates the significant asymmetry in the near wake which develops
as a result of the disruption to the flow caused by the sharp trailing edge of the 45◦

cylinder.
Simulations at Re = 318, 354 and 389 were performed using this modified cylinder.

The wakes computed behind this modified cylinder exhibited no evidence of the
aforementioned asymmetry, and a zero time-averaged lift coefficient was recorded
consistently. This confirms that the source of this wake asymmetry is the separating
flow from the sharp downstream corner of the square cylinder.

Three-dimensional simulations at these Reynolds numbers were performed to
determine if the same asymmetry emerged. Interestingly, the development of three-
dimensional flow in the wake acted to suppress this asymmetry. Therefore, at least for
this geometry, it is expected that this asymmetry will not be detected experimentally,
though it remains an open question as to whether this holds for all bodies which
exhibit this phenomenon.

In a number of cases, wake vortices were found to coalesce into two parallel
shear layers of opposite-sign vorticity. Further downstream, these shear layers became
unstable and a second vortex street was produced. This phenomenon was observed for
Re � 70. This far-wake phenomenon is well known, having been studied numerically
and experimentally (Taneda 1959; Williamson & Prasad 1993; Karasudani &
Funakoshi 1994; Inoue & Yamazaki 1999), and thus is not further investigated
here.
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